EMPIRICAL BAYES ESTIMATION AND UNBIASED PREDICTION THEORY
نویسندگان
چکیده
منابع مشابه
Empirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملEmpirical Bayes Estimation of Reliability
Assessment of the reliability of various types of equipment relies on statistical inference about characteristics of reliability such as reliability function, mean lifetime of the devices, or failure rate. General techniques of statistical inference (estimation and hypotheses testing) are reviewed in Estimation; Least-Squares Estimation; Maximum Likelihood; Nonparametric Tests; Hypothesis Testi...
متن کاملAn Empirical Bayes Derivation of Best Linear Unbiased Predictors
Let (Y1,θ1), . . . ,(Yn,θn) be independent real-valued random vectors with Yi, given θi, is distributed according to a distribution depending only on θi for i= 1, . . . ,n. In this paper, best linear unbiased predictors (BLUPs) of the θi’s are investigated. We show that BLUPs of θi’s do not exist in certain situations. Furthermore, we present a general empirical Bayes technique for deriving BLUPs.
متن کاملEmpirical Bayes and Full Bayes for Signal Estimation
We consider signals that follow a parametric distribution where the parameter values are unknown. To estimate such signals from noisy measurements in scalar channels, we study the empirical performance of an empirical Bayes (EB) approach and a full Bayes (FB) approach. We then apply EB and FB to solve compressed sensing (CS) signal estimation problems by successively denoising a scalar Gaussian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF THE JAPAN STATISTICAL SOCIETY
سال: 2000
ISSN: 1882-2754,1348-6365
DOI: 10.14490/jjss1995.30.65